Vol. 45, no. 4

JOURNAL of CONCHOLOGY

14 November 2025

Published by the Conchological Society of Great Britain and Ireland, established 1874

New record of an established population of the Seminole rams-horn, Planorbella duryi (Wetherby, 1879) (Gastropoda: Planorbidae) in continental France

Baptiste Segura¹, Sebastian Prati², Andrea C. Reyes Camargo³,⁴, Tom Jamonneau⁵,⁶, Ludovic Rossell³ & Vincent Prié 7,8,9

- 1 Aquascop biologie, 1520 route de Cécélès, 34270 Saint Mathieu de Tréviers, France; baptiste.segura@aquascop.fr
- 2 Department of Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany; sebastian.prati@uni-due.de
- 3 Université de Montpellier, Faculté des Sciences, Place Eugène Bataillon, 34095 Montpellier, France; andreacaro2616@gmail.com, ludovic.rossell@gmail.com
- 4 Reserva: The Youth Land Trust, P.O. Box 57277, Washington, DC, USA 20037
- 5 Association Guibétois, 211 Chemin du triol, 34343 Viol-le-Fort, France; tommalraux@gmail.com
- 6 Université de Toulouse, Paul Sabatier III, 118 route de Narbonne, 31062 Toulouse, France; tom.jamonneau@utoulouse.fr
- 7 CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; prie.vincent@gmail.com
- 8 BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
- 9 Institut Systématique Evolution Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles. 57 rue Cuvier, CP 51, 75005 Paris, France

Corresponding author: Andrea C. Reyes Camargo

Abstract. Planorbella duryi, a thermophilic freshwater snail, has been increasingly found beyond its native range mainly due to releases related to the aquarium trade. This study reports the establishment of a novel *P. duryi* population within a thermal spring in Juvignac (Herault, France), a recently documented aquarium dumping hotspot. All life stages of *P. duryi* were observed throughout our study, conducted from December 2023 to November 2024, which suggests a successful establishment. Morphological identification was confirmed by molecular analysis (DNA barcoding). Additionally, an ectoparasite, identified as a member of the *Chaetogaster limnaei* species complex, was isolated from one *P. duryi* specimen, representing the first record in this host. Other parasites, such as digenean trematodes, were not observed. While current evidence suggests *P. duryi* poses minimal ecological threat in continental France due to its limited distribution and competitive disadvantages compared to native snails, ongoing aquarium dumping could facilitate further spread and introduction of associated parasites, potentially altering ecological dynamics.

Key words. Freshwater snail, aquarium trade, invasive species, DNA barcoding, parasites

ZooBank identifier. urn:lsid:zoobank.org:pub:70A783DB-61ED-4CBE-8966-59A21A151E71

DOI. https://doi.org/10.61733/jconch/4558

Introduction

Planorbidae is the most species-rich limnic pulmonate family among freshwater gastropods (Albrecht *et al.* 2006; Böhm *et al.* 2021), and *Planorbella duryi* (Wetherby, 1879), Seminole rams-horn, is a highly adaptable species of planorbid in both lentic and lotic waters (Alexandrowicz 2003). This species is endemic to Florida (USA), where it can be found in large numbers, particularly in the Everglades, which are characterized by a tropical savannah climate as per

the Köppen classification (Pilsbry 1934; Appleton 1977). Due to its ease of care, high fertility, and appealing colours, *P. duryi* is a very popular aquarium snail (Vimpère 2004; van Leeuwen *et al.* 2025; Walker 2025). Releases and escapes linked to the aquarium trade have facilitated this species' spread beyond its native range (Frandsen & Madsen 1979; Walker 2025). To date, *P. duryi* has been recorded from most of the Caribbean islands and numerous countries of Central America, South America, Europe, Asia, and Africa (Alexandrowicz 2003; Seddon 2011; Saito *et al.* 2023; Nekhaev

et al. 2024; van Leeuwen et al. 2025). Notably, it was first recorded in thermal waters in continental (i.e. Metropolitan) France (Vendée department) by Vimpère (2004).

Although P. duryi appears to be the most widely distributed planorbid species, data on its established or extinguished feral populations and their potential ecological impacts remain scarce. Their introduction in the early 1970s and 80s in Tanzania and Saudi Arabia as biological control agents for native snails, intermediate hosts for trematode parasites causing human schistosomiasis, together with later laboratory experiments have demonstrated low competition and dispersal abilities (Madsen 1990). Hence, once introduced and established outside their native range, P. duryi has mostly remained constrained to few sites (Pointier et al. 2005). More recently, Diéguez Fernández et al. (2022) found no evidence of negative effects on Guatemalan local fauna and flora but highlighted significant knowledge gaps. These knowledge gaps complicate any potential regulation of the trade of *P. duryi* and contribute to its exclusion from legal directives or conservation-related policies (Seddon 2011; EEA 2025).

While conducting a study at a thermal spring in southern France, recently documented as an aquarium dumping hotspot (Jamonneau *et al.* 2025; Prati *et al.* 2025), we encountered aquatic molluscs resembling *P. duryi*. Their identification was further confirmed through morphological analysis and DNA barcoding using the cytochrome oxidase subunit I gene. An ectoparasite belonging to the *Chaetogaster limnaei* von Baer, 1827 species complex was also detected among examined specimens.

MATERIAL AND METHODS

Snails resembling *Planorbella duryi* were observed between December 2023 and November 2024 in the Fontcaude thermal park in Juvignac (Hérault, France; 43.6277°N, 003.8119°E) while investigating feral populations of *Poecilia reticulata* (Peters, 1859) and *Neocaridina davidi* (Bouvier, 1904). The site, a known aquarium-dumping hotspot, is fed by warm water from a thermal spring; therefore, water temperature in its upper part remains above 20 °C throughout the year (Jamonneau *et al.* 2025; Prati *et al.* 2025). In March 2024, two individuals supposed to belong to *P. duryi* were collected with hand nets as per prefectural authorization (id: DDTM34-2024-05-14915). They were later morphologically identified as per Glöer (2019), screened for endoand ectoparasites, and molecularly identified.

As no endoparasite was visually detected, DNA was solely isolated from snails and an ectoparasite likely belonging to

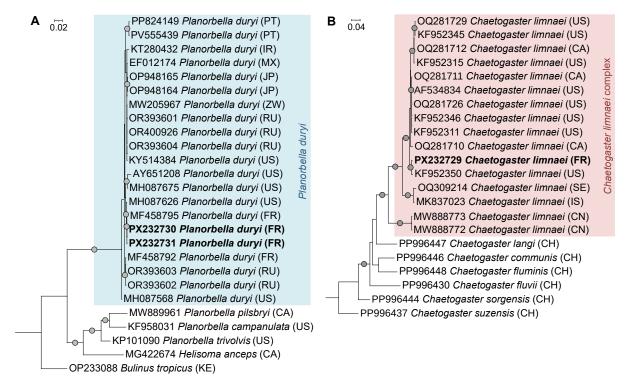
the genus *Chaetogaster*, using a modified salt-precipitation protocol (Grabner *et al.* 2015), and a COI fragment was amplified using the universal eukaryotic primers LCO1490 and HCO2198 (Folmer *et al.* 1994). All PCR reactions and the PCR setting for the LCO1490-HCO2198 primers followed Prati *et al.* (2024). PCR products of the snails and the ectoparasite were sent unpurified to Microsynth Seqlab (Germany) for Sanger sequencing using the LCO1490 primer.

Raw sequences were quality-checked and edited using Geneious Prime v. 2025.0.2 (GraphPad Software LLC) and compared against GenBank records using BLASTN (https://blast.ncbi.nlm.nih.gov). Snails and ectoparasite sequences were aligned using the MAFFT v. 7.490 algorithm with standard settings (Katoh et al. 2019). Maximumlikelihood phylogenetic trees with bootstrap support values (1,000 replicates) were produced in IQ-Tree v. 2.4.0 (Minh et al. 2020) using the TVM+F+G4 substitution model for snails and GTR+F+I for ectoparasites, both based on Bayesian Information Criterion (BIC) scores. The respective outgroups were Bulinus tropicus (Krauss, 1848); GenBank access number OP233088) and Chaetogaster suzensis Vivien et al. 2024 (PP996437). The names and circumscription of the genus *Planorbella* follow Rempel (2021) and Nekhaev et al. (2024), while those of Chaetogaster follow Vivien et al. (2024).

RESULTS

The collected snails showed morphological traits pointing to *Planorbella duryi*: translucent, brown shell, coiled in a plane with a flat left side and a deeply umbilicate right side (Fig. 1). This allowed us to exclude native planorbid species (Glöer 2019). Morphological characteristics were corroborated by molecular identification; all sequenced snails belonged to the same haplotype of *P. duryi*, which showed 99.67% similarity to an individual (MF458795) previously collected in the Durance River in south-eastern France (Corse *et al.* 2017) (Fig. 2A). The detection of uninterrupted presence of the snail between December 2023 and November 2024, as well as the observation of individuals in all life stages, indicate that *P. duryi* has established a self-sustaining population in the thermal park in Juvignac.

The ectoparasite, isolated from inside the shell of one of the two *P. duryi* examined, was not morphologically identified at species level since taxonomy of the genus *Chaetogaster* remains partially unresolved (Smythe *et al.* 2015; Vivien *et al.* 2024). Nevertheless, molecular identification indicated that the ectoparasite belongs to the *Chaetogaster*


Figure 1. Planorbella duryi specimen from the thermal park of Juvignac. © Jean-François Cart.

limnaei species complex and showed 98.97% similarity to an individual (KF952350) previously isolated from *Physella gyrina* (Say, 1821) (Physidae) from the United States. The phylogenetic position of the isolated ectoparasite indicates it belongs to an ectosymbiont lineage *sensu* Smythe *et al.* (2015).

Discussion

The presence of *Planorbella duryi* in continental France is not a novelty. To date, the only confirmed feral population is that found in the outflow of an ornamental fish farm in the Department of Vendée (Vimpère 2004). There, as well as in the Fontcaude thermal park in Juvignac, water comes from a natural subterranean thermal spring. While there are no updates on its whereabouts since the abovementioned publication, the fish farm is still operating. If the warm-water outflow has not been interrupted over the last 20 years and no eradication measures have been implemented, the snails may still be there.

Subsequent observations of *P. duryi* have been reported in continental France, but the amount of information provided is scarce. For instance, Bertrand (2020) noted the presence of the species during a malacological survey conducted between 2003 and 2013 in the Bois de Païolive Natura 2000 site in southern France, Department of Ardèche. However, there is no information on when and how many times P. duryi was detected over the course of the sampling campaign. Nor were information on its establishment and confirmation of its identification through molecular analyses provided. On the other hand, molecular identification was provided for four P. duryi individuals mislabelled as Planorbarius corneus (Linnaeus, 1758) collected in the Durance River, southern France, while sampling construction materials for metabarcoding libraries (Corse et al. 2017). Similarly, there was not any information regarding a possible establishment. It is important to note that P. duryi has also been found in garden centres in France (Beckmann 1987; V. Prié unpublished data, in Montpellier), although these environments cannot be considered as natural habitats. Therefore, apart from the first population of P. duryi in France, recorded by

Figure 2. Maximum-likelihood phylogenetic trees. **A**, *Planorbella duryi*. **B**, *Chaetogaster limnaei* species complex. Grey dots represent bootstrap support values above 90%. Sequences obtained in this study are indicated in bold. Abbreviations: Canada (CA), China (CN), France (FR), Iceland (IS), Iran (IR), Japan (JP), Kenya (KE), Mexico (MX), Portugal (PT), Russia (RU), Sweden (SE), Switzerland (CH), United States (US), and Zimbabwe (ZW).

Vimpère (2004) several years ago and whose current status is unclear due to the lack of recent data, the only certainly known feral population in the country is the one mentioned in this article.

In continental France, formerly as well as currently established P. duryi populations appear, until now, to be restricted to thermal waters, which aligns with the species' thermophilic nature. Nonetheless, the aforementioned observations suggest that populations may also exist in colder water, at least temporarily (i.e. during the warmest months) or in proximity to anthropogenic structures such as low-head dams, which can locally increase water temperature (Zaidel et al. 2021; Bois et al. 2023). This suggests that an increase in established populations of P. duryi across continental France and neighbouring countries may occur in the foreseeable future, especially as Western Europe is one of the fastest warming regions at mid-latitudes (van Oldenborgh et al. 2009) and as aquarium dumping remains a common practice (Brown et al. 2025). However, P. duryi is unlikely to become a non-native invasive species of economic or ecological concern in continental France, even when suitable habitats are available, due to its poor competitive performances against other snails (Pointier et al. 2005; Diéguez Fernández *et al.* 2022. Nevertheless, like other planorbids, *P. duryi* is a known host for several parasites that might eventually be co-introduced and may potentially persist in the environment, even if the host does not (Sharp 2008; Simberloff *et al.* 2013). Within this context, digenean trematodes is a group of particular concern.

Digenean trematodes are among the most common parasites found in *P. duryi* (Sharp 2008). Although medically relevant trematode species are not known from this host, trematodes can play an important role in ecosystems as they regulate host population dynamics and play an essential role in food web functioning (Morgan *et al.* 2002; Kuris *et al.* 2008). However, due to an exiguous sample size, surely insufficient in this study to detect low-prevalence infections, no infections were detected. Interestingly, an ectosymbiont belonging to the *C. limnaei* species complex was detected in one of the specimens sampled. Its presence may have further contributed to the apparent absence of trematode infection, as this ectosymbiont is known to feed on trematode cercariae and could exert a protective effect on infected snails (Zimmerman *et al.* 2011; Muñiz-Pareja & Iturbe 2018).

The *C. limnaei* species complex comprises cosmopolitan freshwater oligochaetes which have been reported in

more than 40 species of freshwater snails from at least 10 families, including Planorbidae (Fried et al. 2008; Smythe et al. 2015). However, to our knowledge, this study is the first record of any C. limnaei species complex infection in P. duryi. This oligochaete occurs in two forms: a "commensal" ectosymbiotic form, found in our samples, and a parasitic form. The ectosymbiotic form lives on the outer surface or just inside the snail shell, primarily feeding on planktonic organisms such as diatoms, rotifers, and trematode cercariae, but it is also suspected to feed on the host mantle tissue and is known to negatively impact growth in heavily infected hosts (Höckendorff et al. 2015). The parasitic form is found in the renal system of the host, where it feeds on kidney cells (Smythe et al. 2015). Smythe et al. (2015) also demonstrated that different lineages within the C. limnaei species complex exert lineage-specific effects on the snail hosts. Hence, this ectosymbiont might have varying impacts on other snail species cohabiting with P. duryi, possibly influencing interspecies dynamics within the community.

Our finding further highlights an ongoing practice of aquarium dumping on the site. However, we do not expect *P. duryi* to expand into nearby waterbodies (such as the Mosson River) due to thermal constraints. While *P. duryi* spread might be limited, that of potential exotic parasites introduced alongside the host, such as digenean trematodes, might not be so restricted and may lead to unexpected consequences.

ACKNOWLEDGEMENTS

We thank the Collaborative Research Center (CRC) RESIST (A09), funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—CRC 1439/1, project number 426547801—for providing the resources required to sequence the samples.

We also express our gratitude to Jean-François Cart for the macro-photographs of *P. duryi* used to illustrate this article. We also express our thanks to Ilhan Ben Halima, Vicente Navarro, Thomas Pouyanne, Jordi Soliveres and Yuri Wagner for their assistance during the sampling campaign at the Juvignac thermal spring. Our sincere thanks also go to the technicians of the Department of Biology and Ecology at the Faculty of Sciences of Montpellier, for their assistance in providing equipment, facilities and insightful advice. Besides, we express our gratitude to Yaneth Camargo for her contribution to improving the quality of English writing in this article. We acknowledge the Préfecture de l'Hérault and the French Office for Biodiversity (OFB) for reviewing our research project and granting the necessary permits to con-

duct the study. Lastly, we are very grateful to the anonymous reviewers for their valuable and thorough suggestions that substantially improved the quality of our manuscript.

The authors have no financial or non-financial interest to disclose.

REFERENCES

Albrecht C, Kuhn K, Streit B. 2006. A molecular phylogeny of Planorboidea (Gastropoda, Pulmonata): insights from enhanced taxon sampling. *Zoologica Scripta* **36**: 27–39. doi: 10. 1111/j.1463-6409.2006.00258.x

ALEXANDROWICZ SW. 2003. *Planorbella duryi* (Wetherby, 1879) from the crater-lake Albano (central Italy). *Folia Malacologica* **11**: 89–93. doi: 10.12657/folmal.011.009

APPLETON CC. 1977. The exotic fresh-water snail *Helisoma duryi* (Wetherby, 1879) (Planorbidae) in Southern Africa. *Zoologische Mededelingen* **52**: 125–135.

BECKMANN KH. 1987. Land- und Süßwassermollusken der Maltesischen Inseln. Friedrich-Held-Gesellschaft, Munchen, 38p.

Bertrand A. 2020. Notes d'observations de mollusques continentaux d'Andorre, d'Espagne et de France. *Folia Conchyliologica* **53**: 27–34.

Böhm M, Dewhurst-Richman NI, Seddon M, Ledger SEH, Albrecht C, Allen D, Bogan AE, Cordeiro J, Cummings KS, Cuttelod A, Darrigran G, Darwall W, Fehér Z, Gibson C, Graf DL, Köhler F, Lopes-Lima M, Pastorino G, Perez KE, Smith K, Damme D van, Vinarski MV, Proschwitz T von, Rintelen T von, Aldridge DC, Aravind NA, Budha PB, Clavijo C, Van Tu D, Gargominy O, Ghamizi M, Haase M, Hilton-Taylor C, Johnson PD, Kebapçi Ü, Lajtner J, Lange CN, Lepitzki DAW, Martínez-Ortí A, Moorkens EA, Neubert E, Pollock CM, Prié V, Radea C, Ramirez R, Ramos MA, Santos SB, Slapnik R, Son MO, Stensgaard AS, Collen B. 2021. The conservation status of the world's freshwater molluscs. *Hydrobiologia* 848: 3231–3254. doi: 10.1007/s10750-020-04385-w

Bois P, Beisel JN, Cairault A, Flipo N, Leprince C, Rivière A. 2023. Water temperature dynamics in a headwater forest stream: Contrasting climatic, anthropic and geological conditions create thermal mosaic of aquatic habitats. *PLOS ONE* **18**: e0281096. doi: 10.1371/journal.pone.0281096

Brown JV, Kelso WE, Diaz R, Daniel WM, Brassard HM, Kaller MD. 2025. Invasive species in the aquarium trade: survey of attitudes, behaviors, and knowledge among US participants. *Hydrobiologia*. doi: 10.1007/s10750-025-05930-1

CORSE E, MEGLÉCZ E, ARCHAMBAUD G, ARDISSON M, MARTIN JF, TOUGARD C, CHAPPAZ R, DUBUT V. 2017. A from-benchtop-to-desktop workflow for validating HTS data and for taxonomic identification in diet metabarcoding studies. *Molecular Ecology Resources* 17: e146–e159. doi: 10.1111/1755-0998.12

- DIÉGUEZ FERNÁNDEZ L, MUÑOZ MVM, LAVEAGA DDV, SANDOVAL JAJ, DUARTE RF, SOSA CABRERA I, ARRUTI AEP. 2022. First Record of *Planorbella Duryi* (Wetherby, 1879) (Gastropoda: Planorbidae) (= *Helisoma Duryi* Wetherby, 1879) in Jutiapa, Guatemala. *Acta Scientific Veterinary Sciences* 4: 92–94. doi: 10.31080/ASVS.2022.04.0395
- EEA. 2025. European Environmental Agency. *Planorbella duryi* (Wetherby, 1879). https://eunis.eea.europa.eu/species/286 060. Accessed on 2025-09-25.
- FOLMER O, BLACK M, HOEH W, LUTZ R, VRIJENHOEK R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. *Molecular Marine Biology and Biotechnology* **3**: 294–299.
- Frandsen F, Madsen H. 1979. A review of *Helisoma duryi* in biological control. *Acta Tropica* **36**: 67–84.
- FRIED B, HUFFMAN JE, SAXTON TM, PEOPLES RC. 2008. The association of *Zygocotyle lunata* and *Echinostoma trivolvis* with *Chaetogaster limnaei*, an ectosymbiont of *Helisoma trivolvis*. *Journal of Parasitology* **94**: 553–554.
- GLÖER P. 2019. The Freshwater Gastropods of the West-Palaearctis. Fresh- and Brackish Waters Except Spring and Subterranean Snails. Identification Key, Anatomy, Ecology, Distribution. Biodiversity Research Lab, Hetlingen, 399 pp.
- Grabner DS, Weigand AM, Leese F, Winking C, Hering D, Tollrian R, Sures B. 2015. Invaders, natives and their enemies: distribution patterns of amphipods and their microsporidian parasites in the Ruhr Metropolis, Germany. *Parasites & Vectors* 8: 419. doi: 10.1186/s13071-015-1036-6
- HÖCKENDORFF S, FRÜH D, HORMEL N, HAASE P, STOLL S. 2015. Biotic interactions under climate warming: temperature-dependent and species-specific effects of the oligochaete *Chaetogaster limnaei* on snails. *Freshwater Science* **34**: 1304–1311. doi: 10.1086/683606
- JAMONNEAU T, REYES CAMARGO AC, BEN HALIMA I, PRATI S, DENYS G. 2025. Evidence of an established population of Poecilia reticulata and Neocaridina davidi in metropolitan France. Cybium: International Journal of Ichthyology. doi: 10.26028/ cybium/2024-034
- KATOH K, ROZEWICKI J, YAMADA KD. 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. *Briefings in Bioinformatics* **20**: 1160–1166. doi: 10.1093/bib/bbx108
- Kuris AM, Hechinger RF, Shaw JC, Whitney KL, Aguirre-Macedo L, Boch CA, Dobson AP, Dunham EJ, Fredensborg BL, Huspeni TC, Lorda J, Mababa L, Mancini FT, Mora AB, Pickering M, Talhouk NL, Torchin ME, Lafferty KD. 2008. Ecosystem energetic implications of parasite and free-living biomass in three estuaries. *Nature* 454: 515–518. doi: 10.1038/nature06970
- MADSEN H. 1990. Biological methods for the control of freshwater snails. *Parasitology Today* **6**: 237–241. doi: 10.1016/0169-4758(90)90204-h
- MINH BQ, SCHMIDT HA, CHERNOMOR O, SCHREMPF D, WOODHAMS MD, HAESELER A VON, LANFEAR R. 2020. IQ-TREE

- 2: new models and efficient methods for phylogenetic inference in the genomic era. *Molecular Biology and Evolution* **37**: 1530–1534. doi: 10.1093/molbev/msaa015
- MORGAN JAT, DEJONG RJ, JUNG Y, KHALLAAYOUNE K, KOCK S, MKOJI GM, LOKER ES. 2002. A phylogeny of planorbid snails, with implications for the evolution of *Schistosoma* parasites. Molecular Phylogenetics and Evolution **25**: 477–488. doi: 10.1016/s1055-7903(02)00280-4
- Muñiz-Pareja FC, Iturbe-Espinoza PA. 2018. Effectiveness of *Chaetogaster limnaei* as a controller of *Fasciola hepatica* in experimental infections of *Galba truncatula*. *Tropical Parasitology* **8**: 88.
- Nekhaev IO, Babushkin ES, Khrebtova IS, Kondakov AV, Aksenova OV, Vinarski MV. 2024. Detection of two species of non-indigenous freshwater snails in Arctic Siberia. *Molluscan Research* **44**: 152–159. doi: 10.1080/13235818.2024.2315525
- PILSBRY HA. 1934. Review of the Planorbidae of Florida, with notes on other members of the family. *Proceedings of the Academy of Natural Sciences of Philadelphia* **86**: 29–66.
- Pointier JP, David P, Jarne P. 2005. Biological invasions: the case of planorbid snails. *Journal of Helminthology* **79**: 249–256. doi: 10.1079/joh2005292
- Prati S, Grabner DS, Hupało K, Weiperth A, Maciaszek R, Lipták B, Bojko J, Bérces F, Sures B. 2024. Invisible invaders: range expansion of feral *Neocaridina davidi* offers new opportunities for generalist intracellular parasites. *Biological Invasions* 26: 2499–2523. doi: 10.1007/s10530-024-03324-3
- Prati S, Reyes Camargo AC, Jamonneau T, Halima IB, Sures B. 2025. Seasonal exchange of microsporidian parasites between native and non-native pet-traded freshwater crustaceans: is parasite spillover favored over spillback? *Parasite* 32: 61. doi: 10.1051/parasite/2025053
- REMPEL EM, MARCUS JM, DETWILER JT. 2021. The complete mitochondrial genome of the file ramshorn snail *Planorbella pilsbryi* (Mollusca: Gastropoda: Hygrophila: Planorbidae). *Mitochondrial DNA Part B* **6**: 3181–3183. doi: 10.1080/23802 359.2021.1975508
- SAITO T, UCHIDA S, CHIBA S. 2023. First records of introduced *Planorbella duryi* (Wetherby, 1879) (Gastropoda: Hygrophila: Planorbidae) in Japan. *American Malacological Bulletin* **40**: 80–89. doi: 10.4003/006.040.0101
- SEDDON MB. 2011. The IUCN Red List of threatened species. *Planorbella duryi* (Europe assessment). https://apistaging.iucnred list.org/fr/species/156073/4885770. Accessed on 2025-09-25.
- SHARP PR. 2008. Identification, distribution, and probability of infection in sympatric gastropods by digenean parasites at Pahay-okee, Everglades National Park using molecules and morphology. *ProQuest ETD Collection for FIU*: 1–387.
- SIMBERLOFF D, MARTIN JL, GENOVESI P, MARIS V, WARDLE DA, ARONSON J, COURCHAMP F, GALIL B, GARCÍA-BERTHOU E, PASCAL M, PYŠEK P, SOUSA R, TABACCHI E, VILÀ M. 2013. Impacts of biological invasions: what's what and the way forward. Trends in Ecology & Evolution 28: 58–66. doi: 10.1016/j.

tree.2012.07.013

- Smythe AB, Forgrave K, Patti A, Hochberg R, Litvaitis MK. 2015. Untangling the ecology, taxonomy, and evolution of *Chaetogaster limnaei* (Oligochaeta: Naididae) species complex. *The Journal of Parasitology* **101**: 320–326. doi: 10.1645/13-465.1
- VAN LEEUWEN SJ, BAKKER PAJ, NECKHEIM CM. 2025. The non-marine molluscs of Bonaire (Mollusca). *Nederlandse Faunistische Mededelingen* **64**: 345–402.
- VAN OLDENBORGH GJ, DRIJFHOUT S, ULDEN A VAN, HAARSMA R, STERL A, SEVERIJNS C, HAZELEGER W, DIJKSTRA H. 2009. Western Europe is warming much faster than expected. *Climate of the Past* **5**: 1–12. doi: 10.5194/cp-5-1-2009
- VIMPÈRE J. 2004. Introduction en France continentale d'un gastéropode d'eau douce originaire de Floride: *Planorbella duryi* (Wetherby, 1879), (Mollusca: Gastropoda: Pulmonata). *Le Naturaliste Vendéen* **4**: 127–130.
- VIVIEN R, LAFONT M, ISSARTEL C, FERRARI BJD, MARTIN P. 2024. The genus *Chaetogaster* Baer, 1827 (Annelida, Clitellata) in Switzerland: a first step toward cataloguing its molecular

- diversity and description of new species on a DNA sequence basis. *Biology* **13**: 693. doi: 10.3390/biology13090693
- WALKER T. 2025. Alien molluscs in British and Irish hothouses. *Journal of Conchology* **45**: 494–519. doi: 10.61733/j conch/4544
- ZAIDEL PA, ROY AH, HOULE KM, LAMBERT B, LETCHER BH, NISLOW KH, SMITH C. 2021. Impacts of small dams on stream temperature. *Ecological Indicators* **120**: 106878. doi: 10.1016/j. ecolind.2020.106878
- ZIMMERMANN MR, LUTH KE, ESCH GW. 2011. Complex interactions among a nematode parasite (*Daubaylia potomaca*), a commensalistic annelid (*Chaetogaster limnaei limnaei*), and trematode parasites in a snail host (*Helisoma anceps*). *Journal of Parasitology* **97**: 788–791. doi: 10.1645/ge-2733.1

Manuscript submitted: 2 October 2025

Revised manuscript accepted: 18 October 2025

Editor: Robert Forsyth