Formosana ruianensis n. sp. and transfer of Oospira xinxingae Qiu, 2022 to Formosana O. Boettger, 1877 (Gastropoda: Clausiliidae)

Zhi-Jie Xu1, Ming-Wei Cai2 & Zi-Ang He3

1 Zhejiang Jinhua No. 1 Senior High School, Jinhua 321015, Zhejiang, China
2 Shandong Vocational Animal Science and Veterinary College, Weifang 261061, Shandong, China
3 Department of Senior High, Shanghai South-west Model Middle School, Xuhui 200030, Shanghai, China

Corresponding author: Zhi-Jie Xu (ZJXMolls@outlook.com)

Abstract. Formosana ruianensis n. sp. is described from Ruian Shi, Wenzhou Shi, Zhejiang, China, and its shell and genital anatomy are illustrated. The new species was confirmed in a phylogenetic analysis based on the 16S gene, and p-distances with other species of Formosana O. Boettger, 1877, Formosanella H. Nordsieck, 2003, and Paraformosana H. Nordsieck, 2003 are given. Oospira xinxingae Qiu, 2022 is transferred to Formosana: thus, Formosana xinxingae n. comb.

Key words. Door snail, land snail, China, Zhejiang Province, Phaedusinae, phylogeny

DOI. https://doi.org/10.61733/jconch/4508

INTRODUCTION

Among Asian clausiliids (Gastropoda: Clausiliidae), the many species with several palatal plicae and without a tendency to form a lunella were classified in the genus Oospira W.T. Blanford, 1872 (Nordsieck 2001), which has resulted in the apparent high diversity of this genus. However, recent molecular studies by Motochin et al. (2017) and Hwang et al. (2022) have presented molecular evidence that disputes this character-based taxonomic treatment. Motochin et al. (2017) revealed that both nuclear and mitochondrial DNA show that Oospira and some of its subgenera, including Formosanella H. Nordsieck, 2003 and Formosana O. Boettger, 1877, are unrelated. Additional evidence that Taiwanese Formosana are distinct from Oospira was given by Hwang et al. (2022) in their thorough study of Taiwanese Formosana based on molecular, morphological, and anatomical data. As a result, Nordsieck (2021) adopted this separation of Formosana from Oospira.

In recent decades, several new Chinese species of clausiliids have been described. So far, fieldwork and studies of Asian clausiliids have discovered numerous new species (Nordsieck 2001, 2003, 2005, 2007, 2016; Grego & Szekeres 2011, 2017; Hunyadi & Szekeres 2016), but within the limits of relatively few collections and collectors, as well as the lack of anatomical data. Many species are endemic to small areas. Some regions of China, such as Zhejiang Province, have not had sufficient fieldwork and may still have unreported new species, as Nordsieck (2012) had revealed the rich diversity of Chinese clausiliids.

One of us (Ming-Wei Cai) collected specimens of an unknown species of Formosana in Wenzhou City, Zhejiang Province, China, which we later identified as a new species. This taxon is most like Formosanella friniana (Heude, 1890) and the Taiwanese Formosana species. We describe and figure the characters of the shell and genitalia, as well as its distribution.

In the locality data, zhen means “town” and shi and xian means “city”.

MATERIALS AND METHODS

Thirteen specimens of the new species were collected, all from the type locality. Two living specimens were found. Geographic coordinates were obtained using Bigemap GIS software (http://www.bigemap.com/) with Map World as the satellite image source (https://www.tianditu.gov.cn/).

In the locality data, zhen means “town” and shi and xian means “city”.

©The authors. This work is freely available under the Creative Commons Attribution 4.0 International licence (CC BY 4.0).
One specimen was dissected for anatomical study, while the other was used for in molecular analysis. We also sequenced samples of another five species; the polymerase chain reaction (PCR) primers and methods used are shown in Table 1. The PCR primers were synthesized by Sangon Biotech (Shanghai, China). We used PhyloSuite v. 1.2.3 (Zhang et al. 2020; Xiang et al. 2023) and MEGA v. 11 (Tamura et al. 2021) for our phylogenetic analysis. Other sequences from Hwang et al. (2022) and Mamos et al. (2021) were downloaded from GenBank (Table 2), and Grandinenia ardouiniana (Heude, 1885) was used as the outgroup. Sequences were aligned using Muscle in MEGA v. 11 and checked and clipped manually. PhyloSuite v. 1.2.3 (Zhang et al. 2020) was used to conduct, manage, and streamline the analyses with the help of several plug-ins.

Gap sites were removed with trimAl v. 1.2 rev. 57 (Capella-Gutiérrez et al. 2009) using the “automated1” command. The clipped 16S sequences were ultimately 255 base pairs long. To generate a Bayesian tree, the best partitioning scheme and evolutionary models for 1 predefined partition were selected using PartitionFinder2 v. 2.1.1 (Lanfear et al. 2016) with the greedy algorithm and small-sample-corrected Akaike Information Criterion (AICc). Bayesian-inference phylogenies were inferred using MrBayes v. 3.2.7a (Ronquist et al. 2012) under the partition model (2 parallel runs, 5 million generations), in which the initial 25% of sampled data were discarded as burn-in. To generate a maximum-likelihood tree, ModelFinder v. 2.2.0 (Kalyaanamoorthy et al. 2017) was used to select the best-fit model using the Bayesian information criterion (BIC). Maximum-likelihood phylogenies were inferred using IQ-TREE v. 2.2.0 (Nguyen et al. 2015) under the K81u+G4+F model for 20,000 ultrafast bootstraps (Minh et al. 2013), as well as the Shimodaira–Hasegawa-like approximate likelihood-ratio test (Guindon et al. 2010). The results were visualized in FigTree v. 1.4.4 (https://tree.bio.ed.ac.uk/software/figtree/) and Adobe Illustrator 2022. We calculated p-distances using the clipped sequence in MEGA v. 11, with 1,000 bootstrap replications and a 50% coverage cutoff.

The holotype specimen of the new species was deposited in the mollusc collection of the Museum of Hebei University (HBUMM, Baoding, Hebei). Paratypes are in the private collections of Zhi-Jie Xu (ZJXC, Jinhua, China), Shi-Ji Peng (SJPC, Chengdu, China), Zheng-Ping Liu (ZPLC, Chengdu, China), Li-Wen Lin (LWLC, Xiamen, China), Zi-An Qiu (ZAQC, Nanjing, China), Zhong-Guang Chen (ZGCC, Nanchang, China), Jin-Cheng Lu (JCLC, Shang-
RESULTS
Bayesian- and maximum-likelihood trees (Fig. 1) show similar topology. Among all the nodes in the Bayesian tree, two nodes are not supported by a posterior probability of >0.5. The posterior probability at each node range from 0.3 to 0.97. Posterior probabilities <0.9 appear in eight nodes, while the remaining two nodes are >0.9. In the maximum-likelihood tree, the bootstrap values of the nodes range from 43 to 90. Only the value of one node is <50, and one is >90.

All Taiwanese Formosana species form a terminal cluster with high support (maximum-likelihood bootstrap support, BS = 90; Bayesian posterior probability, BPP = 0.94). The nodes of other Chinese species of Formosana, Formosanella, and Paraformosana have low support (BS ≤ 73, BPP ≤ 0.86), and Formosanella species are at the root of the tree. All Formosana species form a cluster with a low-support value (BS = 63, BPP = 0.58). These findings are consistent with the results of Hwang et al. (2022). The p-distances among species analyzed is shown in Table 3.

SYSTEMATICS
Family Clausiliidae Gray, 1855
Subfamily Phaedusinae A.J. Wagner, 1922
Genus Formosana O. Boettger, 1877
Type species. Clausilia swinhoei L. Pfeiffer, 1866, by original designation.
Remarks. Genital characters (Fig. 2) differ between this genus and Formosanella H. Nordsieck, 2003. All Formosana species with known genitalia characters have a fat, strong penis and epiphallus, while in the genitalia of Formosanella bensoni and Formosanella recedens these are rather thinner.

Formosana ruianensis Xu & Cai, n. sp.
Figures 1, 2C, 3–5
ZooBank identifier. urn:lsid:zoobank.org:act:005C0173-3A13-43C1-94A3-68FB04397F70
Diagnosis. A large (26.0–28.7 mm high), fat Formosana species with a large, conical protoconch and subcolumellar lamella receding behind peristome. Palatal plicae 7–9. Aperture detached from penultimate whorl.

Figure 1. Bayesian-inference tree (left) and maximum-likelihood tree (right) inferred from 16S gene sequences. Bayesian posterior probabilities and bootstrap supports are shown on the left/right nodes. The new species is shown in red.
Type locality. Mountains near Gaolou Zhen [高楼镇], Ruian Shi [瑞安市], Wenzhou Shi [温州市], Zhejiang Province, China (27.735° N, 120.287° E).

Type materials. Holotype: leg. Ming-Wei Cai, 6 April 2023, HBUMM 08774 (shell and separate, ethanol-preserved body). Paratypes: 11 dead-collected shells, from same locality and date as holotype (ZJXC/4, SJPC/1, ZPLC/1, LWLC/1, ZAQC/1, ZGCC/1, JCLC/1, FCSC/1); 1 live-collected specimen (ZJXC/1), from same locality, leg. Ming-Wei Cai, 25 October 2023 (shell and separated ethanol-preserved body).

Distribution. Known only from the type locality.

Description. Shell (Fig. 3A–C), fat, spindle-shaped, yellowish-brown. Whorls 8–10. Protoconch relatively large, conical, not attenuated, without decollation, and with fine dense striae, both spirally and axial, which gives shell a silk texture. Neck rounded, with striae slightly stronger and wavy. Aperture pyriform. Peristome thick, detached, and expanded, its edge pale brownish, reflexed. Superior lamella (Fig. 3E) high; junction between its inner end and spiral lamella marked by an angle. Inferior lamella strong, reaching peristome margin, steeply ascending. Subcolumellar lamella weakly emerging, only visible in oblique view. Palatal plicae 6–8, dorsolateral in position, with uppermost one longest (Fig. 3D). Clausilium plate not visible in oblique view.

Shell measurements. Holotype: shell height 26.0 mm, shell width 7.5 mm, aperture height 7.5 mm, aperture width 6.0 mm. Paratypes: shell height 27.3–28.7 mm (mean 27.19 mm), shell width 7.3–8.1 mm (mean 7.64 mm), aperture height 6.1–7.5 mm (mean 7.02 mm), aperture width 5.0–6.4 mm (mean 5.9 mm).

Genitalia (Fig. 4). Penis thickened, its appearance simple, smooth, its length ½ that of spermoviduct and hermaphrodite duct combined. Epiphallus fusiform, thickened, shorter than penis. Vas deferens short, <$\frac{1}{2}$ of length of epiphallus. Penial-retractor muscle inserted at approximately 1/3 length of epiphallus at end with vas deferens. Bursa copulatrix ellipsoid. Diverticulum adherent to spermoviduct.

Etymology. The species is named for Ruian Shi, which is the city near the type locality.

Chinese vernacular name. 瑞安丽管螺 (Pinyin: ruì ān lì guǎn luó).

Habitat. Living snails (Fig. 5A, B) were found in a deciduous forest in an area of igneous rock, under damp leaf litter or on damp moss.

Remarks. The holotype animal was observed to be oviparous when temporarily being raised by one of us (Ming-Wei Cai).

Comparison. The overall appearance and protoconch whorls...
Figure 3. Formosana ruianensis n. sp. A, B, holotype (HBUMM 08774). C, paratype in Li-Wen Lin collection. D, E, details of plicae and lamellae, respectively (not to scale). (Photographs by Li-Wen Lin; illustration by Zhi-Jie Xu.)
of this species are similar to Taiwanese species of *Formosana*. In both *F. formosensis* (H. Adams, 1866) and *F. swinhoei* (L. Pfeiffer, 1866), the protoconch is attenuate, the peristome is adpressed to the last whorl, and the subcolumellar lamella reaches to the peristome. In the new species, the protoconch is not attenuated, the peristome is detached from the last whorl, and the subcolumellar lamella is not visible from a frontal view. Our phylogenetic analysis indicates that *Formosana ruianensis* n. sp. is distinct, with a basal position in the clade *Formosana*, from species of mainland China, while Taiwanese *Formosana* species form a terminal cluster. From Hwang *et al.*'s (2022) anatomical study, we conclude that all Taiwanese species of *Formosana* in which the anatomy is known have a relatively long vas deferens, while *Formosana* from mainland China for which genitalia are known—*F. jianyueae* (Chen, 2020), *F. xinxingae* (Qiu, 2022) n. comb., and *F. ruianensis* Xu & Cai, n. sp.—have the vas deferens distinctly shorter according to dissections by Chen (2020), Qiu (2022), and us.

We compared the new species with *F. pacifica* (Gedeker, 1884) and two other similar species, *F. malleolata* H. Nordsieck, 2012 and *F. splendens* H. Nordsieck, 2005. All these species have adpressed peristomes and attenuate protoconchs. *Formosana pacifica* is distinctly smaller than the new species (Yen 1939; Nordsieck 2005) with a similar shell.

![Figure 4. Genitalia of *Formosana ruianensis* n. sp. (not to scale). Abbreviations: at = atrium, bc = bursa copulatrix, d = diverticulum, ep = epiphallus, hg = hermaphroditic gland, p = penis; pr = penis-retractor muscle, so = spermoviduct; vd = vas deferens. (Photographs by Zhi-Jie Xu.)](image)

![Figure 5. Living specimens and habitats of *Formosana ruianensis* n. sp. A, paratype, coll. Zhi-Jie Xu. B, holotype (HBUMM 08774). C, overview of the habitat. (Photographs by Ming-Wei Cai.)](image)
height (25.2 mm) but much smaller shell width (4.9 mm) (measured by us), while in the other two species the subcol- umellar lamella reaches the peristome and is visible in frontal view. Some specimens of *F. malleolata* and *F. splendens* have a doubled peristome, while the type specimens of *F. ruianensis*, we found no doubled peristome.

Nordsieck (2003) originally placed *Formosanella* as a subgenus of *Oospira* and diagnosed it as having a steeply ascending inferior lamella. Hwang *et al.* (2022) included *Formosanella friniana* in this genus based on only phylogenetic evidence, showing that morphological characters of the shell cannot clearly differentiate *Formosanella* and *Formosana*. Therefore, although the new species is biogeographically closest to *Formosana* and shares some shell characters with it, we classify the new species as *Formosana* and not *Formosanella*. We also note that it shares a simple penis and epiphallus, as described for *F. jianyueae* (Heude, 1882), in characters of both the shell and genitalia. This species was originally described as a species of *Oospira* in the sense of Nordsieck (2007). However, now that *Oospira* has been divided, the generic placement of this species should be reconsidered. In Qiu's (2022) original description, this species was said to be most like *Oospira magnanciana* (Heude, 1882), now *Formosana magnanciana* (Heude, 1882), in characters of both the shell and genitalia. We also note that it shares a simple penis and epiphallus, as well as a short vas deferens, with *F. jianyueae* and *F. ruianensis* Xu & Cai, n. sp. *Formosana xinxingae* occurs in Chongqing, rather than Yunnan, Guangdong, and Guizhou, where *Oospira* species are found (Nordsieck 2012). Thus, we consider that “*Oospira* xinxingae” belongs in *Formosana*.

Acknowledgements

This is our first research article. Special thanks are given to Mr Zheng-Ping Liu (Chengdu, China), Mr Ran-Xi Lin (Zhanjiang, China), and Mr Zhe-Yu Chen (Shanghai, China) for their precious ideas, generous help, and critical opinions. Mr Min Wu (Wuhan) helped with the deposition of the holotype in HBUMM. Besides, we also thank Mr Shi-Ji Peng (Chengdu, China), Mr Jun-Wen Tan (Chongqing, China), Mr Yu-Tong Ding (Shanghai, China), and Mr Zhi Hu (Hunan, China) for providing living specimens, Mr Li-Wen Lin (Xiamen, China) for his help with photography, Mr Zhong-Guang Chen (Nanchang, China) for his help with the molecular analysis, and Mr Shi-Yang Feng (Chengdu, China) for his help with examining specimens. We thank the anonymous reviewers for their valuable comments on our manuscript.

References

