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IntroductIon

On a recent deep-sea sampling expedition along 
the Gay Head-Bermuda Transect south of New 
England, we recovered a living specimen of the 
exceptionally large and locally rare snail Oocorys 
sulcata Fischer 1884 (Fig. 1). Oocorys is a genus of 
caenogastropods residing in the family Cassidae 
(Warén & Bouchet, 1990; Bouchet & Warén, 1993; 
Beu, 2008). It has undergone a relatively modest 
adaptive radiation in the deep sea estimated to 
include 6–10 species globally (Bouchet & Warén, 
1993). Bouchet & Warén (1993) synonymized O. 
sulcata Fischer 1884 with Benthodolium abyssorum 
Verrill & Smith 1884, O. watsoni Locard 1897, 
O. fischeri Locard 1897, and O. umbilicata Quinn 
1980, based on finding continuous variation in 
shell form among nearly 300 museum specimens 
representing these named taxa. More recently, 
Beu (2008) added O. rotunda Dall 1908, O. elongata 
Schepman 1909, O. weberi Schepman 1909, O. 
schepmani Turner 1948, and Eudolium aulacodes 
Tomlin 1927, to the synonymy based on examin-
ing a larger collection. The strong jaws and radula 
of O. sulcata suggest that it is a predator, probably 
on Annelida (Quinn, 1980). Its protoconch mor-
phology clearly indicates planktotrophic larval 
development (Bouchet & Warén, 1993). 

Oocorys sulcata has large body size, low pop-
ulation density, and an extensive geographic 
range. These macroecological features are often 
found in combination (Brown, 1995), for exam-
ple, in many solitary mobile predators inhabit-
ing more familiar environments. However, in  
O. sulcata, the scaling of the relationships is extreme, revealing several aspects of deep-

sea ecology that are potentially important and 
unique.
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Figure 1 Oocorys sulcata Fischer 1884, collected at 
station 14A, 3300 m, 38˚17.71’N, 70˚29.64’ W, 16 June 
2008, r.V. Endeavor, Cruise 447. Shell height 45.2 mm, 
shell width 31.0 mm. Catalogue number MCZ 361869, 
Department of Mollusks, Museum of Comparative 
Zoology, Harvard University. photograph by Leo 
Kenney.
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results and dIscussIon

In Fig. 2 we compare the size of O. sulcata to the 
size spectrum of caenogastropods and vetigas-
tropods collected in earlier extensive surveys 
between 1964 and 1973 along the same Gay 
Head-Bermuda Transect (c.f. Sanders et al., 1965; 
Sanders, 1977; McClain et al., 2005). The earlier 
data represent measurements on 3,426 individu-
als of 83 species retrieved from 41 epibenthic 
sled samples and one anchor dredge sample 
taken between 196 m and 5042 m (from McClain 
et al., 2005 with additions). O. sulcata is by far 
the largest snail reported from this region. It 
is approximately an order of magnitude larger 
than the average body size (shell height + width 
= 8.2 mm) and nearly three orders of magnitude 
larger in biovolume. No O. sulcata were found 
in the earlier sampling program, although there 
are records in the western North Atlantic from 
nineteenth century dredging expeditions (Fig. 
3). There are three other species that do reach 
unusually large size represented in earlier col-
lections: Gymnobela bairdii Verrill & Smith 1884; 
Belomitra quadruplex (Watson 1882); and Mohnia 
abyssorum (Fischer 1883) (Fig. 2). The conspicu-
ous displacement of size between these large spe-
cies and the rest of the snail fauna may represent 
the well-known dichotomy of miniaturisation 
and gigantism found in some other deep-sea 
taxa (Gage & Tyler, 1991; McClain et al., 2006). 
This size divergence has not been recognized 
previously in deep-sea molluscs. The fact that it 
emerges only at lower bathyal to abyssal depths 
(> 2800 m), where average size in the rest of snail 
fauna declines significantly (Fig. 2), suggests that 
severely limited food supply may somehow drive 
the evolution of highly disparate body sizes, but 
the precise selective mechanisms remain unclear. 

What is known about the global distribution 
of O. sulcata is shown in Fig. 3. Compared to 
coastal gastropod species, its geographic range is 
remarkably broad. It includes eastern and west-
ern corridors of the Atlantic and reaches well into 
the Indian Ocean to the western pacific. There 
is also one locality record in the eastern pacific 
off panama. Since most of the deep sea is unex-
plored, particularly in the Indo-pacific, the geo-
graphic range of O. sulcata may be even wider. 
Its bathymetric range is similarly impressive, 
extending from the outer continental shelf to the 
abyss (150–5073 m), although its distribution is 

primarily mid-bathyal and abyssal. Although the 
relative distribution of range sizes in deep-sea 
mollusks is still poorly documented at oceanic 

Figure 2 The shell size (height + width) of the speci-
men of Oocorys sulcata shown in Fig. 1 (solid square) 
compared to shell sizes of all caenogastropod and 
vetigastropod species collected previously along the 
Gay Head-Bermuda Transect south of New England. 
Other unusually large snails include Gymnobela bairdii 
(solid diamond), Belomitra quadruplex (solid circle), 
and Mohnia absyssorum (solid triangle). Shaded ovals 
contain dense clusters of data from an earlier analysis 
of snail size in this region (see McClain et al., 2005, 
Fig. 2 for a plot of all individuals), and small dots are 
larger individuals at these depths. The three curves 
are the 99, 95 and 90% percent quantile regressions 
that show the relationship of maximum size to depth. 
All three regressions are significant at p=0.0002. See 
McClain et al. (2005) for regression equations.
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and global scales, very large ranges like those 
found in O. sulcata appear to be fairly common 
(Allen, 2008; rex & Etter, 2010). 

These enormous horizontal and bathymetric 
distributions have implications for the current 
debate surrounding the relative amount of bio-
diversity in the deep sea. In a pivotal paper, 
Grassle & Maciolek (1992) predicted total macro-
faunal diversity to be 107–108 species based on 
extrapolating regional rates of species accumu-
lation in the western North Atlantic to global 
scales. However, there is growing evidence that 
many deep-sea species are more broadly dis-
tributed than coastal species, suggesting that 
overall deep-sea diversity may be considerably 
lower (Carney, 1997; rex et al., 2005; McClain 
et al., 2009). Any discussion of deep-sea biodi-
versity must include the caveat that existing 
estimates are based entirely on morphologically-
defined species. recent studies of population 
genetic structure show that some phenotypi-
cally coherent deep-sea mollusks contain deep 
cladal divisions comparable to those between 
well-established congeners in coastal systems 
(Etter et al., 1999; Quattro et al., 2001; Etter 
et al., 2005; Zardus et al., 2006). This suggests that 
some morphospecies may actually be complexes 
of cryptic species. We do not know whether this 

is the case in O. sulcata, and its rarity and the 
paucity of specimens collected alive make it an 
unpromising candidate for genetic analysis.

South of New England, O. sulcata appears to be 
very rare in terms of its local and regional abun-
dance. It was not found in any of the 41 epiben-
thic sled samples taken earlier along the Gay 
Head-Bermuda Transect, nor in the other 24 sled 
samples taken during the recent r.V. Endeavor 
Cruise 447 that yielded the single specimen from 
3300 m shown in Fig 1. For the transect as a 
whole, its relative abundance among all gastro-
pods collected is on the order of 10–4, and below 
1000 m on the order of 10–3. Since epibenthic 
sleds sample roughly 1000 m2 of sea floor, a crude 
estimate of O. sulcata’s density in this region is 
1.5 × 10–5 individuals m–2, or 15 individuals km–2. 
Among all 87 records of O. sulcata reported by 
Bouchet & Warén (1993), 70% were single dead 
shells or living specimens, and only a third of the 
samples contained living individuals. This raises 
the perennial question of how such sparsely 
distributed, slow moving, gonochoristic spe-
cies can possibly maintain reproductively viable 
populations in the deep sea. part of the answer 
may be that O. sulcata has diffusive rarity (sensu 
Schoener, 1987); it may be common at some sites 
and rare elsewhere. For example, Quinn (1980) 

Figure 3 The global distribution of Oocorys sulcata. Data from Smith (1906), Turner (1948), Quinn (1980), 
Bouchet & Warén (1993), Beu (2008) and this paper. Some points represent multiple samples. Map from iMap 3.1 
(www.biovolution.com).
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noted that 25–30 living specimens were present 
among 55 lots of O. umbilicata (= O. sulcata) col-
lected in the Tongue of the Ocean (1234–2780 m), 
a deep trough that cuts into the Bahama Bank. 
It was the most common snail collected there. It 
is conceivable that O. sulcata maintains its broad 
range, often represented by isolated individuals, 
as a metapopulation through dispersal by its 
planktotrophic larvae from more dense popula-
tions. Such a tenuous existence may be offset by 
the well-known adaptive advantages associated 
with large body size including greater longevity 
and fecundity, higher individual growth rate and 
metabolic efficiency, more mobility, broader diet, 
and protection from predators (peters, 1983). This 
is entirely speculative, but it is becoming clear 
that large-scale patterns of biogeography in the 
deep sea will present ecologists with significant 
new theoretical challenges.
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