FOSSIL PUPILLOIDEA LAND SNAILS FROM THE BORGLOON FORMATION (EARLY OLIGOCENE, BELGIUM)

RODRIGO B. SALVADOR1, CAMILLE LOCATELLI2 & JOS LENAERTS3

1Museum of New Zealand Te Papa Tongarewa. 169 Tory Street, 6011, Wellington, New Zealand.
2Royal Belgian Institute of Natural Sciences. Vautier Street 29, 1000, Brussels, Belgium.
3Independent Researcher. Demerstraat 8, 3730, Hoeselt, Belgium.

Abstract Pupilloidea is a diverse group of land snails, most of which are of minute size. Because of that, Paleogene pupilloid fossils are often overlooked and scarcely studied, partly because of a historical collection bias against small-sized fossils and partly due to the preservation bias against their fragile shells. The Borgloon Formation in Belgium (Rupelian, Early Oligocene), despite well-studied, still lacks proper identifications for most of its pupilloid snails. Herein, we present a reassessment and taxonomic account of the fossil Pupilloidea from the Borgloon Formation. Four species were identified in the material: Pupoides gerardae (Karnekamp, 1990) comb. nov. (Pupillidae), Gastrocopta didymodus (Sandberger, 1858) (Gastrocoptidae), Vallonia sandbergeri (Deshayes, 1863) (Valloniidae), and Vertigo ovatula (Sandberger, 1875) (Vertiginidae).

Key words Atuatuca Formation, Gastrocoptidae, micro-CT, Pupillidae, Rupelian, Tongeren Group, Stylommatophora, Valloniidae, Vertiginidae.

INTRODUCTION

Pupilloidea is a worldwide-distributed superfAMILY of land snails, typically of minute size and, as the name suggests, bearing pupoid shells, although some families contain larger animals or have lineages bearing discoid shells. Pupilloids are common and widespread in the Central and Western European fossil record, being much more frequently found in Neogene sediments, with records getting sparser in the Oligocene and further back in the Paleogene (e.g., Wenz, 1923; Preece, 1982; Pacaud & Le Renard, 1995; Salvador et al., 2016a). Pupilloid snails from the older Cenozoic epochs are often overlooked and scarcely studied, partly because of the historical collection bias against small-sized fossils and partly due to the preservation bias against their fragile shells.

The Borgloon Formation in Belgium (Rupelian, Early Oligocene) is somewhat of an exception. Its molluscan fauna has been recently and thoroughly described (Marquet et al., 2008; Janssen & Lenaerts, 2019), but even so the identity of most of its pupilloid snails remained an open question, with the majority bearing only a generic name and the tag ‘sp.’ Therefore, herein we present a reassessment and taxonomic account of the fossil Pupilloidea from the Borgloon Formation.

GEOLOGICAL SETTING

The deposits of the Early Oligocene in Belgium, the so-called Tongeren Group, are divided into three formations; from bottom to top: Zelzate Formation, Sint-Huibrechts-Hern Formation, and Borgloon Formation (Laga et al., 2001). While the first two include predominantly sediments deposited in a marine environment, Borgloon Formation includes continental coastal environments. Borgloon Formation is well-developed towards eastern Belgium in Flemish Brabant (Vlaams-Brabant) and Limburg, especially in the municipalities of Tienen and Boutersem (Brabant) and in the area between Borgloon and Kleine Spouwen (near Tongeren, Limburg) (Laga, 1988). Mammalian fossils indicate the Borgloon Formation dates from the earliest Rupelian (King et al., 2016).

The name Borgloon Formation (“Formatie van Borgloon” in Dutch) was introduced by Laga (1988) without type locality or type section. Laga (1988) presented type sections only for each member of the formation, but none is situated in Borgloon. The Formation’s members are: Henis Member and Alden Biesen Member in Limburg, and Boutersem Member (including Hoogbutsel Bed and Kerkom Bed) in Brabant (Laga, 1988). Furthermore, the name Borgloon Formation replaced, without proper explanation, the older name Atuatuca Formation (Janssen et al., 1976), which represented the...
same stratigraphical sequence in the Tongeren area (known as “Atuatuca Tungrorum” by the Romans) and counted with descriptions of its type locality and section, along a detailed stratigraphical profile (Janssen & Lenaerts, 2019). A proposal to reconsider the name of the formation was advanced to the National Commission for Stratigraphy Geological Survey of Belgium (Janssen & Lenaerts, 2019).

The members of the Borgloon Formation consist in a system of coastal-continental lagoon deposits (Laga et al., 2001; Marquet et al. 2008; King et al., 2016). In the area near Boutersem, where the remains of terrestrial vertebrates have been found, islands or near coast marshlands might have occurred. Tidal influences with influx of euhaline water and freshwater from the mainland created a euhaline environment with species tolerating considerable changes in salinity (Marquet et al. 2008). These outcrops yielded vast amounts of molluscan fossils, among which was found a small quantity of freshwater species and an even smaller amount of land snails (Marquet et al. 2008). The latter seem to be restricted to the clayey/marly deposits. It is not fully clear whether the terrestrial snails were carried to the near-coast environment by freshwater streams or if they were living on offshore islands that were flooded when sea levels rose.

Terrestrial snails have been found in the following seven outcrops of the Borgloon Formation (Cadée et al., 1976): (1) Vertebrate horizon, Boutersem Member (European land mammal age MP 21); Hoogbutsel near Boutersem municipality, Flemish Brabant (lat 50.842770, long 4.851880). A thin layer (ca. 10cm) of clay overlying the Neerrepden Sands with numerous euhaline molluscan fossils (Glibert & de Heinzelin, 1952). Most work conducted there by Belgian researchers failed to find land snails, although the Dutch “Werkgroep voor Tertiaire en Kwartaire Geologie” recovered Vallonia sp. and Vertigo sp. in the early 1970’s. (2) A similar vertebrate horizon to (1) was found in Hoeleden (Kortenaken municipality, Flemish Brabant), with a somewhat richer molluscan fauna including a few specimens of Vallonia sp. and Vertigo sp. (Glibert & de Heinzelin, 1952). (3) Alden Biesen Member; Hulsberg, Borgloon municipality, Limburg (lat 50.803808, long 5.326165). From the several boreholes drilled in Hulsberg (Kruissink et al., 1978), one sample from mid-Alden Biesen Member contained the land snails Carychium sp. and Gastrocopta sp. (4) Alden Biesen Member; Nachttegaalstraat, former Kleine Spouwen municipality (now Bilzen), Limburg (lat 50.836410, long 5.548390). Thin clayey layer (ca 10cm) forming the top of the Alden Biesen Member and containing a well-preserved euhaline molluscan fauna, with freshwater and a few land snails, including all the Pupillidae species discussed herein. (5) Base of the Berg Sands (“Zone à Callista kickxi (Nyst, 1836)”; Glibert & de Heinzelin, 1954b), Bilzen Formation. Keistraat, hamlet of Berg, former Kleine Spouwen municipality (now Bilzen), Limburg (lat 50.847790, long 5.548890). This is the type locality of the Berg Sands, containing marine mollusks. However, the base of the Sands has eroded the underlying the Alden Biesen Member and reworked some of its contents, including its mollusks. A few reworked specimens of Vertigo sp. were found in this outcrop. The distance from outcrop (4), also in Kleine Spouwen, is ca. 1.5km. (6) Alden Biesen Sands, Alden Biesen Member; Alden Biesen Castle Park, former Rijkhoven municipality (now Bilzen), Limburg (lat 50.840552, long 5.529177). The type locality of Alden Biesen Sands is situated in this locality (at the former entrance of the Estate), but no land snails were recovered from its 2 m-thick shell bed. Instead, land snails (Vallonia sp. and Vertigo sp.) were found in a shell bed 300m away from it, about 1.5m deep. For more information on these outcrops, please refer to the full account by Marquet et al. (2008). (7) Alden Biesen Member; construction pit at Driekruisenstraat, Tongeren municipality (lat 50.799728, long 5.464075). This was a temporary outcrop exposed during a building excavation, consisting of 5m of visible Alden Biesen Member, more clayey than (and with thin layers of sand) outcrops of Kleine Spouwen and Alden Biesen. Well-preserved euhaline mollusks were found, including species that are otherwise rare in the Member. Two freshwater species were found, alongside rare terrestrial Vertigo sp.

Material and methods

The specimens studied herein are deposited in the collections of the Naturalis Biodiversity Center (RGM; Leiden, The Netherlands) and the Royal Belgian Institute of Natural Science (RBINS; Brussels, Belgium). The material is largely the same studied by Marquet et al. (2008), with a few
additions. There were some errors and mix-ups of register numbers in the work of Marquet et al. (2008), so here we provide the correct numbers for the lots.

Selected specimens were imaged using the x-ray micro-computed tomography technique to better visualize and analyze their apertural barriers and internal structures. Micro-CT scans were performed at the RBINS using the XRE UniTOM system (TESCAN XRE, Ghent, Belgium). No filter was used. Each sample was previously glued on the tip of a sharpened carbon stick with water-soluble fish glue in order to immobilize it during the scanning process. All samples were scanned using the microfocus mode at a voltage of 85 kV and an exposure of 2000 ms. Other parameters were adapted depending on specimen size and the voxel size to reach (voxel size range: 1.5µm to 5µm). A summary of the parameters used for each sample can be seen in Table 1. The resulting projections were reconstructed using the XRE Reconstruction software to get a stack of 2D TIF images. Then segmentation, visualization and analysis were performed using the Dragonfly software v. 4.5.0.711 (ORS, 2016). We exported 3D models as STL files and uploaded them to the SketchFab platform for 3D rendering. Transparency was applied to some models to display internal structures.

Interactive 3D models of the RBINS collections are freely available online on SketchFab (https://sketchfab.com/naturalsciences). For some specimens, we also provide a version of the model with the sediment inside the shell digitally excluded and/or a model with a transparent shell, in order to better visualize the internal structures. The models can also be seen on the RBINS virtualcollections website (http://virtualcollections.naturalsciences.be/) by searching for their RBINS registration number.

Systematic classification follows Bouchet et al. (2017). For simplicity, the entries in the cresonymies given below are restricted only to those works dealing with the Borgloon Formation.

Systematics

SUPERFAMILY PUPILLOIDEA

FAMILY PUPILLIDAE

Genus *Pupoides* L. Pfeiffer, 1854

Pupoides gerardae (Karnekamp, 1990) comb. nov. (Fig. 1A–D)

Microstele gerardae Karnekamp, 1990: 113, pl. 1; Marquet et al., 2008: 71, text-fig. 12, pl. 20, fig. 3; Kronenberg, 2009: 18, pl. 2, fig. 17.

Material analyzed RBINS 07220, RBINS 07221, RBINS 07222; Borgloon Formation: Alden Biesen Member (outcrop Kleine Spouwen, Bilzen).

Discussion. This species was originally described as *Microstele gerardae* from the Early Oligocene (Rupelian) Atuatuca Formation, retrieved from a temporary exposure near Spouwen, Bilzen, Belgium (Karnekamp, 1990). The present material from the Borgloon Formation, although fragmentary, compares very well with the material from the type locality (holotype RGM 229794), as already pointed out by Marquet et al. (2008).

However, the classification of this species in *Microstele* Boettger, 1886 is contentious, based on superficial similarity with Recent *M. muscerda* (Benson, 1853) from Sri Lanka and India (Raheem et al., 2014). The latter species has a much narrower shell, with a deeper suture, and differently-placed and additional apertural dentition (Raheem et al., 2014). The difference is even more accentuated in comparison to other species of *Microstele*, in particular to the type species *M. noltei* (Boettger, 1886) from southern Africa (Zilch, 1959; Verdcourt, 1968; van Bruggen, 1970; van Bruggen & Rolán, 2003).

The present species bears a much closer resemblance and correspondence of structures to the genus *Pupoides*: the more conical shell profile, with a broader body whorl; the shallower suture and less convex whorls; and especially the presence of the parietal tooth and its positioning near the insertion of the peristome (Fig. 1C; Zilch, 1959). The present fossils are especially akin to *P. coenopictus* (Hutton, 1834), a Recent species that ranges from Africa to Southeast Asia (Raheem et al., 2014). As such, herein we propose the new combination *Pupoides gerardae* (Karnekamp, 1990).

The same reasoning might be valid for other supposed Central and Western European fossil *Microstele*, such as *M. wenzi* (Fischer, 1920) and *M. mariae* (Morgan, 1920) from the Miocene of Germany and France, respectively. In fact, Fischer (1920) had originally described the former species as *Pupoides wenzi*, so a revision of those fossils is necessary.

Pupoides, as currently understood, is distributed worldwide except for Europe (Schileyko,
B Sal Salvador et al. 1998; its type species is *P. nitidulus* (L. Pfeiffer, 1839), from Cuba. There are several subgenera proposed (Schileyko, 1998), but the group likely represents a polyphyletic assemblage pending revision. In any event, the genus is distributed through tropical and subtropical areas today (Schileyko, 1998), which might be interpreted as indicative of warmer climates during the Early Oligocene in the area covered by the Borgloon Formation (Karnekamp, 1990; Rasser et al., 2019).

FAMILY GASTROCOPTIDAE

Genus *Gastrocopta* Wollaston, 1878

Gastrocopta didymodus (Sandberger, 1858) (Fig. 1E)

Material analyzed RBINS 07223, RGM.607305 (erroneously numbered RGM 550-113-114 in Marquet et al., 2008 and assigned to figure 2a–b; it is instead likely the specimen from fig. 1c–e); Borgloon Formation: Alden Biesen Member (outcrops Kleine Spouwen and Alden Biesen Castle, Bilzen).

Discussion The present specimens can be identified by: a slender and cylindrical shell (in line with a select group of European fossil *Gastrocopta* spp.; Stworzewicz & Prisyazhnyuk, 2006; Stworzewicz et al., 2013); a strong and straight columellar lamella; the three palatal teeth diminishing in size towards the adapical region of aperture; a faint basal tooth; and the shape of the anguloparietal lamella (only slightly bifid, with the angular portion being only a faint protrusion). This set of conchological features allow the identification as *G. didymodus* (Sandberger, 1858), a species originally described and only known from the Late Oligocene (Chattian) Landschneckenkalk (“land snail limestone”), in Flörsheim and Hochheim am Main, Germany (Sandberger, 1858), now Hochheim Formation or lower Oppenheim Formation (Salvador et al., 2016a). The present record, therefore, represents an extension in the stratigraphic as well as geographic range of the species.

Despite *G. didymodus* being for a time considered by Sandberger (1875) as synonymous with *G. fissidens* (Sandberger, 1858), further authors later argued that it is in fact a separate taxon.
PuPilloidea from the Borgloon formation (Boettger, 1889; Fischer & Wenz, 1914; Wenz, 1921). While the species is generally referred to the subgenus *Sinalbinula* Pilsbry, 1916 (Pilsbry, 1917; Wenz, 1923), we refrain from a subgeneric classification, since, as discussed by Manganelli & Giusti (2000), they likely do not represent natural groupings as presently defined.

There are no *Gastrocopta* living in Europe today, so their use for any paleoecological interpretations is very limited (Rasser et al., 2019); even more so, they occur worldwide from temperate to tropical regions (Zilch, 1959).

(Fig. 1F–H) *Vallonia sandbergeri* (Deshayes, 1863), micro-CT scan image. RBINS 07216. Scale bar=1mm. I, J *Vertigo ovatula* (Sandberger, 1875). Scale bars=1mm. I Micro-CT scan image. RBINS 07218. J Photograph (auto-montage). RGM.550109.

(Family Valloniidae)

Genus *Vallonia* Morse, 1864

Vallonia sandbergeri (Deshayes, 1863)

(Fig. 1F–H)

Helix Sandbergeri Deshayes, 1863: 816, pl. 52, figs. 23–25.

Helix (*Vallonia*) *lepida*: Sandberger, 1875: 375 [in part].

Vallonia sandbergeri: Wenz, 1923: 910 [in part]; Gerber, 1996: 155, textfig. 3z, fig. 58c–e; Marquet et al., 2008: 72, pl. 19, fig. 2.
Helix (Vallonia ?) cf. sandbergeri: Glibert & de Heizelin, 1954a: 11, pl. 2, fig. 11.

Material analyzed RBINS 07216, RGM.550332; Borgloon Formation: Alden Biesen Member (outcrops Kleine Spouwen and Alden Biesen Castle, Bilzen).

Discussion The present fossils can be identified as V. sandbergeri, as revised by Gerber (1996). This species is very similar to V. lepida (Reuss, 1849), but as remarked by Marquet et al. (2008), it can be distinguished by its larger umbilicus, axial sculpture, and a smaller parieto-columellar region of the aperture. Nevertheless, these features can also be observed in V. lepida, which is a species widely distributed, from the Netherlands to Eastern Europe and from the Early Oligocene to the Late Miocene (Gerber, 1996). Vallonia sandbergeri resembles more closely the Lower Miocene forms from Germany, which also bear a marked axial sculpture (Gerber, 1996). Further revisions of V. lepida might still show that it is a species complex.

Besides the Borgloon Formation, V. sandbergeri is known from outcrops in the region of Étampes, France (Late Oligocene, Chattian), and other localities in Belgium belonging to the Borgloon Formation (Boutersem Sand Member; Early Oligocene, Rupelian) (Gerber, 1996; Marquet et al., 2008).

FAMILY VERTIGINIDAE
Genus Vertigo O.F. Müller, 1774
Vertigo (Alaea) ovatula (Sandberger, 1875)
(>Fig. 1I, J)

Vertigo (Ptychalaea ?) cf. fissidens: Glibert & de Heizelin, 1954a: 11, pl. 2, fig. 12.
Vertigo (Vertigo) sp. 1: Marquet et al., 2008: 73, pl. 20, fig. 1.
Vertigo sp. 2: Marquet et al., 2008: 74, pl. 20, fig. 2.

Material analyzed RBINS 07218, RBINS 07219, RGM.550109; Borgloon Formation: Alden Biesen Member (outcrops Kleine Spouwen and Alden Biesen Castle, Bilzen). RGM.510109, RGM.510110, RGM.607304 (erroneously numbered RGM 550–112 in Marquet et al., 2008 and assigned to figure 2c–d; it is instead the specimen from fig. 2a–b); Borgloon Formation: Alden Biesen Member (outcrops Boutersem, Borgloon, and Hulsberg, Limburg). RGM.1362806; Bilzen Formation: Berg Sand Member (outcrop Kleine Spouwen, Bilzen, horizon with Callista kickxi (Nyst, 1836)).

Discussion The present specimens can be identified as V. ovatula by its aperture shape (more circular when compared to Late Paleogene and Early Neogene congeners) and the presence, shape and position of the six apertural barriers: two strong and parallel parietal teeth, one strong parietal lamella, one faint basal tooth, and two strong palatal teeth (with the basalmost one deeply inserted into the aperture). There is some variation in shell size and shape (from the typical more oval and elongated shells to a rounder shell) and dentition (Fig. 11, J).

Intraspecific variation in the size and number of apertural barriers is well-reported in vertiginids (e.g., Stworzewicz, 1999; Salvador, 2015, 2016b; Nekola et al., 2018). Even though the overall number of available specimens is small, there is some variation in the present material. Some specimens present a very faint upper palatal tooth and one (RBINS 07218: Fig. 1I) even has a faint nodule between the two strong palatal teeth. Furthermore, one specimen (RGM.607304, representing Vertigo sp. 2 sensu Marquet et al., 2008: pl. 20, fig. 2a–b) has no parietal teeth whatsoever, but all the other teeth are still present. This latter specimen does not seem to represent a distinct species, being instead just an individual that did not develop the teeth. However, the main and stronger teeth and lamella are important in vertiginid taxonomy (Nekola et al., 2018), and accordingly, the subspecies V. ovatula mosbachensis Boettger, 1889, for instance, has as diagnostic feature the lack of one parietal tooth (Boettger, 1889).

There are presently four recognized subspecies (Boettger, 1889; Wenz, 1923; Stvorzewicz, 1999) within V. ovatula: (1) nominate V. ovatula ovatula from the Late Oligocene (Chattian) Landschneckenkalk of Flörsheim and Hochheim am Main (Germany); V. ovatula hydrobiarum Boettger, 1889 from the Early Miocene (Aquitanian) Hydrobienschichten (“Hydrobia beds”, now Wiesbaden Formation) from Wiesbaden (Germany); V. ovatula mosbachensis Boettger, 1889, also from the Hydrobienschichten
of Wiesbaden; and *V. ovatula miliiformis* Boettger, 1889 from the Middle Miocene (Burdigalian/Langhian) of Poland and Ukraine (Stworzewicz, 1999; Höltke *et al.*, 2016); these forms could represent a further subspecies or even a distinct species. The specimens from the Borgloon Formation correspond very well to nominate *V. ovatula*. The present record, thus, is an extension in both stratigraphic and geographic range of the species.

Vertigo ovatula has been traditionally placed in the Northern Hemisphere subgenus *Alaea* Jeffreys, 1838 (*e.g.*, Boettger, 1889; Fischer & Wenz, 1914), although Wenz (1923) placed it in nominate *Vertigo*. Nekola *et al.* (2018) recently published a molecular phylogeny of *Vertigo*, confirming and better defining several subgenus level taxa. However, those authors did not discuss fossil species older than Pleistocene, did not include them in their revised classification, and did not estimate the times when each subgenus possibly appeared. Nevertheless, based on their classification (and the original diagnosis of Jeffreys, 1830), we can propose the species to be allocated within *Alaea* due to the following diagnostic features: dextral ovate-elongated shell, reduced teleoconch striation, thickened parietal callus, modest apertural sinulus, weak palatal depression on outer surface of body whorl, and the number and position of the apertural barriers (see above). Furthermore, *Alaea* has been recovered as a basal branch of *Vertigo* in the mtDNA tree presented by Nekola *et al.* (2018), which is in line with a group that has potentially been around since the Early Oligocene.

Recent *Vertigo* (*Alaea*) spp. live in open to forested wetlands (although some inhabit upland forests and grasslands; Nekola *et al.*, 2018). Given that congeneric land snails tend to share ecological preferences (*Rasser et al.*, 2019), considering *V. ovatula* as a wetland dweller is in line with the paleoenvironmental interpretation of the Borgloon Formation (Marquet *et al.*, 2018).

Remarks Some specimens (RGM.1362806) were found in the Berg Sand Member (Bilzen Formation), which overlies the Alden Biesen Member of the Borgloon Formation and represents a fully marine transgressive environment (Janssen *et al.*, 1976; King *et al.*, 2016). This material is deemed to represent reworked fossils from the Alden Biesen member, given such small land snails would very unlikely be deposited in a marine environment. Furthermore, those fossils have a more whitish color and hardened aspect, which are usual of reworked specimens. Gaemers (1972) also noted that the “Zone of Callista kickxii” of the Berg Sand Member had reworked gastropods from the Alden Biesen level. Finally, even though our sample size is small, the reworked specimens are slightly larger than the other specimens, which could be indicative of a taphonomical bias favouring larger shells.

Conclusion

In total, four species of Pupilloidea snails were identified in the available material from the Borgloon Formation: *Pupoides gerardae* (Karnekamp, 1990) comb. nov. (Pupillidae), *Gastrocopta didymodus* (Sandberger, 1858) (Gastrocoptidae), *Vallonia sandbergeri* (Deshayes, 1863) (Valloniidae), and *Vertigo ovatula* (Sandberger, 1875) (Vertiginidae). Micro-CT imaging has proven to be a great tool for studying these minute pupilloid snails, as it allows full visualization of apertural barriers (including inside the shell), which are important characters for species identification.

The terrestrial snail fauna of the Borgloon Formation (Marquet *et al.*, 2008; present work) has more in common with the younger fauna from the Mainz Basin (“Mainzer Becken” in German; ca. 250km southeast of Limburg; Chattian), than it does with the fauna from the Paris Basin to the south (Sandberger, 1858–1863; Fischer & Wenz, 1914; Wenz, 1921; Marquet *et al.*, 2008; present work). The relationship among terrestrial Paleogene faunas in Western Europe is still scarcely investigated when compared to Neogene ones, so this should be an interesting venue for future investigation.

Acknowledgements

We are very grateful to Annelise Folie and Robert Marquet (RBINS) and Ronald Pouwer (RGM) for granting us access to the specimens in the collections under their care; to Jean-Claude Stahl for the auto-montage photograph used herein; to R. Pouwer for the comments on an early version of this manuscript; and to the anonymous
reviews for the helpful suggestions. Specimens were scanned using the micro-CT facility in the framework of the DIGIT04 project of RBINS.

REFERENCES

GAEMERS PAM 1972 Otoliths from the type locality of the Tertiary and Quaartaire lithostratigraphical unit: the Atuatuca Formation. Transactio ns of the Linnean Society 16: 323–392.

MANGANELLI G & GIUSTI F 2000 The gastrocoptids of the fossil forest of Dunarobba (Central Italy) and a preliminary revision of the European Tertiary nominal species of Albinula and Vertigopsis (Gastropoda: Pulmonata: Gastrocoptidae). Bollettino della Società Paleontologica Italiana 39: 55–82.

